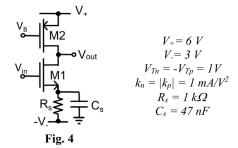
Fondamenti di Elettronica Tutorato Dicembre 2024/Gennaio 2025


Terzo incontro 16 Dicembre 2024 ore 16:00 Aula 2.2.1 D.I. (edificio 2)

Dr. Maurizio Ghisetti

Esercizio 1

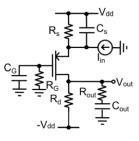
Si consideri il circuito a *MOSFET* riportato nella Fig. 4, in cui v_{in} e' un generatore di tensione di piccolo segnale e V_B e' un generatore di tensione DC.

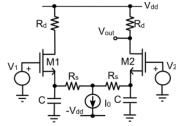
- a) Determinare la tensione V_B necessaria perche' la transconduttanza del MOS M1 sia pari a 2mS Determinare, quindi. la polarizzazione del circuito (tensioni a tutti i nodi e correnti in tutti i rami) e indicare l'intervallo di valori permesso per la tensione di uscita in DC.
- b) Tracciare il diagramma di Bode del modulo del trasferimento di piccolo segnale v_{out}/v_{in} , quotandone tutti i punti significativi. Si assuma per il solo MOS M2, r_0 =100k Ω .

Esercizio 2

Si consideri il circuito a MOSFET riportato nella Fig. 1, in cui i_{in} e' un generatore di corrente di piccolo segnale.

- a) Determinare il valore della resistenza R_s necessario perche' la tensione di uscita in DC sia pari a θ V. Determinare, quindi. la polarizzazione del circuito (tensioni a tutti i nodi e correnti in tutti i rami).
- b) Determinare l'espressione ed il valore del trasferimento di piccolo segnale v_{out}/i_{in} a bassa frequenza.
- c) Tracciare il diagramma di Bode del modulo del trasferimento di piccolo segnale vouv/im, quotandone tutti i punti significativi.

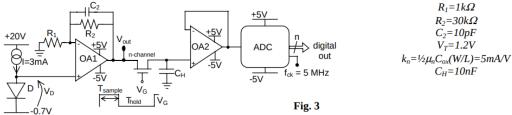



Fig. 1

 $V_{dd} = 6 \ V$ $V_{Tp} = -0.7 \ V$ $|k_p| = 0.5 \ mA/V^2$ $R_G = 100 \ k\Omega$ $C_G = 47 \ \mu F$ $C_s = 47 \ nF$ $R_d = 3 \ k\Omega$ $R_{out} = 1 \ k\Omega$ $C_{out} = 1 \ \mu F$

Esercizio 3

Si consideri il circuito a *MOSFET* riportato nella Fig. 3, in cui v_I e v_2 sono generatori di tensione di piccolo segnale.


- a) Determinare la polarizzazione del circuito (tensioni a tutti i nodi e correnti in tutti i rami).
- b) Determinare l'espressione ed il valore del guadagno differenziale di piccolo segnale v_{out}/(v₂-v_I) a bassa frequenza.
- c) Tracciare il diagramma di Bode del modulo del trasferimento differenziale di piccolo segnale v_{out}/(v₂-v₁), quotandone tutti i punti significativi.

 $V_{Tn} = 1V$ $k_n = 0.5 \text{ mA/V}^2$ $V_{dd} = 5 \text{ V}$ $R_d = 8 \text{ k}\Omega$ $R_s = 1 \text{ k}\Omega$ C = 22 pF $I_0 = 1 \text{ mA}$ Fig. 3

Esercizio 4

Si consideri il circuito riportato nella Fig. 3, che sfrutta la dipendenza dalla temperatura della tensione ai capi di una giunzione pn (-1.8mV/°C) per misurare la temperatura. Si assuma V_D =0.7V per una temperatura di 0°C.

- a) Scrivere l'espressione della tensione di uscita V_{out} in funzione della temperatura a bassa frequenza.
- b) Determinare il numero minimo di bit dell'ADC necessario per garantire una risoluzione di ±0.5°C.
- c) Determinare l'errore dovuto al *droop* (espresso in LSB) se l'amplificatore operazionale 2 e' caratterizzato da una corrente di *bias* $I_b = 500nA$ e la fase di Hold ha una durata pari a $T_{hold} = 18 \mu s$.
- d) Determinare la tensione di comando V_G da applicare al *gate* dell'interruttore *NMOS* per garantire una resistenza virtualmente infinita durante la fase di *Hold* ed una resistenza non superiore a $R_{ds,on}$ =10 Ω nella fase di *Sample* se la temperatura varia nell'intervallo ±50°C.
- e) Determinare per via grafica l'andamento in frequenza del trasferimento reale V_{out}/V_D se l'amplificatore operazionale 1 e' caratterizzato da GBWP=30MHz.