Il Simulatore SPICE

Simulazioni parametriche e modelli dei componenti

Simulazioni parametriche

Utili strumenti in SPICE

meglio capire la struttura del circuito

Analisi di tipo SWEEP in SPICE

□ DC (& AC) SWEEP

- □ Le simulazioni in DC che calcolano il punto di lavoro, assumono un solo valore del generatore DC forzante.
- □ Ci sono situazioni in cui le sorgenti, anche se in DC, possono variare (ad esempio nel tracciamento delle caratteristiche IV di un componente), ma la analisi deve essere condotta in DC, come se calcolassimo tanti bias point. Questo tipo di analisi e' chiamata "sweep."
- □ Quando si effettua lo "sweep" di una sorgente, il simulatore parte da un valore per una sorgente (di tensione o corrente), calcola il punto di lavoro in DC, esatamente come farebbe in una analisi Bias Point, poi incrementa il vaore della sorgente ed effettua una nuova simulazione per il calcolo del punto di lavoro in DC. Questa tecnica "increment-thenanalyse" continua finche' non e' stato analizzato l'ultimo valore della sorgente.

I risultati sono gli stessi di quelli ottenuti effettuando tante simulazioni di bias point, ma la procedura e' molto piu' veloce e consente di visualizzare successivamente I risultati in Probe.

DC SWEEP

Analysis S	Setup			×		
Enabled		Enabled				
	AC Sweep		Options	<u>C</u> lose		
	Load Bias Point		<u>P</u> arametric			
	<u>S</u> ave Bias Point		Se <u>n</u> sitivity			
~	DC Sweep		T <u>e</u> mperature		DC Sweep	×
	Monte Carlo/Worst Case		Transfer <u>F</u> unction		Swept Var. Type Voltage Source	Name: V1
	<u>B</u> ias Point Detail		<u>T</u> ransient	1	C Temperature	Model Type:
	Digital Setup			-	C Model Parameter	Model Name:
		1			C Global Parameter	Param. Name:
					Sweep Type C Linear C Octave C Decade C Value List	Start Value: 0 End Value: 10 Increment: 100m Values:
WINE Nationale C. Gu	iazzoni, Prova Finale, Simulazioni Spice di	Circuiti Elettroni	ici		Nested Sweep	OK Cancel

Nested DC SWEEP

DC Sweep

- □ E' possible specificare una variabile di sweep secondaria, dopo aver specificato quella primaria nella DC Sweep dialog box.
- Quando si specifica una variabile di sweep secono essa forma il loop piu' esterno della analisi, cioe' ogni incremento della variabile di sweep secondar variabile di sweep primaria e' variata in tutto il s range di variazione.

Swoop			7		
Sweep Swept Var. Type Voltage Source Temperature Current Source Model Parameter Global Parameter	Name: Model Type: Model Name: Param. Name:	× V1			
Sweep Type C Linear C Octave C Decade C Value List Nested Sweep	Start Value: End Value: Increment: Values: OK	0 D	C Nested Sweep Swept Var. Type Voltage Source Temperature C Current Source Model Paramete C Global Parameter	Name: V2 Model Type: Model Name: Param. Name:	×
ep secondari isi, cioe' per secondaria, tutto il suo	a, Ia		Sweep Type C Linear C Octave C Decad C Value List Main Sweep	Start Value: End Value: Pts/Octave: Values: 1, 3, 5, 7 ▼ Enable Nested Swee Cancel	

Analisi multi-run in SPICE

□ Advanced multi-run analyses

□ Parametric and temperature

□ Monte Carlo and sensitivity/worst-case

Analisi parametriche in SPICE

□ Analisi parametriche e in temperatura

- Le analisi DC Sweep, Time Domain Transient e AC Sweep/Noise possono essere rese piu' versatili facendo in modo che il simulatore SPICE, anziche' una sola curva, calcoli e tracci un'intera famiglia di curve di uscita, al variare di un parametro scelto tra una tensione o corrente di sorgente, un parametro globale, un parametro di modello oppure la temperatura di funzionamento del circuito.
- E sufficiente, nella finestra Simulation Settings, barrare la casella Parametric e quindi impostare la variabile di scansione in maniera analoga a quanto descritto per l'analisi DC Sweep.

Analisi parametriche in SPICE

□ Analisi parametriche e in temperatura

Analisi in temperatura

Parametric	×
Swept Var. Type C Voltage Source	Name: 11
 Temperature Current Source Model Parameter Global Parameter 	Model Type: NPN Model Name: Q2N3904-1 Param. Name: Vaf
Sweep Type C Linear C Octave C Decade C Value List	Start Value:0End Value:100Increment:10Values:10;70;90;1000
OK	Cancel

Temperatura che varia linearmente in un intervallo, con un certo passo (increment)

•	Analisi	parametriche su	l un
	parame	tro del modello	

	×
<u>N</u> ame:	11
Model Type:	D
Model N <u>a</u> me:	D1N4148
<u>P</u> aram. Name:	BV
Sta <u>r</u> t Value: <u>E</u> nd Value: Increment: <u>V</u> alues: 10;7	0 100 10 0;90;100
Cancel	
	Name: Model Type: Model N <u>a</u> me: Param. Name: Start Value: End Value: Increment: Values: 10;7 Cancel

Parametro di modello (tensione di breakdown del diodo) che puo' assumere una serie di valori

N assumere una serie di valori Manageria di valori Analisi parametriche su un generatore di tensione

Swept Var. Type	Name:	V1
Voltage Source	<u>rr</u> ame.	1*1
C <u>T</u> emperature	Model Tupe:	D
C <u>C</u> urrent Source	model 1 ype.	ре
C Model Parameter	Model N <u>a</u> me:	D1N4148
C <u>G</u> lobal Parameter	<u>P</u> aram. Name:	BV
Sweep Type		1.1
Clinear	Sta <u>r</u> t Value:	· u
		10
C Octave	End Value:	,
C <u>O</u> ctave C <u>D</u> ecade	<u>E</u> nd Value: Pts/Decade:	10
© <u>D</u> ctave	<u>E</u> nd Value: Pts/Decade: ⊻alues: 10;7	0;90;100

Tensione del generatore V1 che varia da 1 μV a 10 V con 10 punti ogni decade

Analisi parametriche in SPICE

□ Analisi parametriche e in temperatura

• Analisi al variare di un parametro «globale», ad esempio il valore di una resistenza

Parametric	×	PM1 PartName: param	×
Swept Var. Type O Voltage Source	Name: Rvar V3	Image: Name Value Image: Name Name Image: Name Name Image: Name Name	Save Attr
C Temperature C Current Source C Model Parameter	Model Type:	R1 C1 63n NAME1=Rvar NAME2= NAME3= VALUE1= VALUE1=	Change Display Delete
 Global Parameter 	Param. Name:	VALUE2= VALUE3=	
Sweep Type C Linear C Octave	Start Value:	0 PARAMETERS: Image: Include Non-changeable Attributes 0 Rvar 1k 1k Image: Include System-defined Attributes	OK Cancel
© Decad∈	Values: 1k, 10k, 100k	 Cambiare il valore della resistenza in {Rvar} Aggiungere dalla libreria SPECIAL il componente PAR Con doppio click su PARAMETERS si apre il Property Inserire Rvar nella casella NAME1, Save Attr, OK 	XAM (parameters) ∙ Editor.
C Guazzoni Prova P	Inserire i valori separati da virgola e spazio	 Assegnare un valore (VALUE1) alla resistenza Rval Selezionare Parametric in Analysis → Setup Selezionare Global parameter Inserire Rvar nel campo Name Inserire i valori di inizio e fine simulazione, o la listatutte le englisi parametriche 	a dei valori come per

Modelli dei componenti

Modelli dei componenti in SPICE

- Tutti i dispositivi a semiconduttore necessitano un proprio modello per indicare a SPICE le corrette equazioni da impiegare per descrivere il comportamento del dispositivo ed i parametri da inserire in tali equazioni.
- □ In assenza di specificazione del modello da impiegare la netlist non viene creata ed il simulatore da errore.
- □ Nella netlist l'istruzione e' del tipo
 - .MODEL Name Type [List_of_parameters]
 - Name e' il nome che diamo al nostro modello.
 - Type e' il tipo di modello che andiamo ad impiegare, codificato con alcune parole chiave (vedi slide successive). Specifica, quindi il tipo di componente che vogliamo modellizzare e, dunque, il set di equazioni da usare.
 - List_of_parameters specifica i parametri da usare nel formato Name_of_parameter = Value.

Modelli dei componenti in SPICE

	Туре	Description	Restrictions
🗆 Possibili parole chiave da usare	CAP	capacitor	
per il tipo di modello (Model	CORE	nonlinear magnetic core (transformer)	PSPICE only
	CSW	current-controlled switch	SPICE3 only
(ype)	D	diode	-
🗆 Ciascuna parola chiave	GASFET	GaAs field-effect transistor with n-type channel	PSPICE only
corrisponde ad un set di	IND	inductor	-
equazioni descrittive del	ISWITCH	current-controlled switch	PSPICE only
componente	LPNP	lateral pnp transistor	PSPICE only
componente.	LTRA	lossy transmission line	SPICE3 only
	NJF	JFET with <i>n</i> -type channel	
	NMF	<i>n</i> -channel MESFET	SPICE3 only
	NMOS	MOS transistor with n-type channel	
	NPN	npn bipolar transistor	
	PJF	JFET with <i>p</i> -type channel	
	PMF	<i>p</i> -channel MESFET	SPICE3 only
	PMOS	MOS transistor with <i>n</i> -type channel	
	PNP	pnp bipolar transistor	
	RES	resistor	
	SW	voltage controlled switch	SPICE3 only
	URC	uniform distributed RC line	SPICE3 only
C. Guazzoni, Prova Finale, Simulazioni Spice di Circuiti Elettron	ici VSWITCH	voltage controlled switch	PSPICE only

Modelli dei componenti in SPICE

- Nel caso di componenti passivi e di dispositivi a semiconduttore, SPICE ha una libreria (breakout library) che contiene componenti (parts) di cui possiamo modificare il modello a seconda delle esigenze simulative.
- □ In generale tali component si chiamano con la lettera propria che indica la parte (R, D, M, etc.) con il suffisso BREAK.
- Per default, il nome del modello e' lo stesso del nome della parte e fa riferimento al modello del dispositivo appropriato con tutti I parametri impostati al loro valore di default.
- Per esempio, la parte DBREAK (diodo della libreria breakout) che fa rferimento al modello DBREAK, derivato da modello intrinseco del diodo

.MODEL DBREAK D

□ Altrimenti e' sempre possible alterare (attraverso il model editor) il modello associato ad un componente creandone una nuova istanza.

Esempio: il modello del Resistore

- □ Il modello per il resistore ed il condensatore non e', in generale, necessario se vogliamo simulare un generico resistore di un certo valore, in assenza di altre specifiche.
- □ Nel caso di un resistore della libreria breakout, RBREAK, il valore effettivo della resistenza e' calcolato da una formula che e' funzione della sua proprieta' VALUE.

Device type	Part name	Part library file	Property	Description			
resistor	RBREAK	BREAKOUT.OLB	VALUE	resistance			
			MODEL	RES model name			
				Model parameters [*]	Description	Units	Default
			-	R	resistance multiplier		1.0
				TC1	linear temperature coefficient	$^{\circ}C^{-1}$	0.0
				TC2	quadratic temperature coefficient	°C-2	0.0
				TCE	exponential temperature coefficient	%/°C	0.0
				T_ABS	absolute temperature	$^{\circ}\mathrm{C}$	
				T_MEASURED	measured temperature	°C	
ATTEN A				T_REL_GLOBAL	relative to current temperature	°C	
		· · · · · · · · · · · · · · · · · · ·	1. A	T_REL_LOCAL	relative to AKO model temperature	°C	

Sinulazioni Spice di Circuiti _____

Esempio: il modello del Resistore

□ modello RES per il resistore

 Se e' incluso il [model name] ed e' specificato TCE, allora la resistenza e' data da <value>·R·1.01TCE·(T-Tnom)

in cui <value> e' normalmente positivo (puo' anche essere negativo, ma non nullo).

Tnom e' la temperature nominale, inserita con l'opzione TNOM

 Se e' incluso il [model name] e non e' specificato TCE, allora la resistenza e' data da <value>·R·(1+TC1·(T-Tnom)+TC2·(T-Tnom)²)

in cui <value> e' normalmente positivo (puo' anche essere negativo, ma non nullo).

Model parameters [*]	Description	Units	Default
R	resistance multiplier		1.0
TC1	linear temperature coefficient	°C-1	0.0
TC2	quadratic temperature coefficient	°C-2	0.0
TCE	exponential temperature coefficient	%/°C	0.0
T_ABS	absolute temperature	°C	
T_MEASURED	measured temperature	°C	
T_REL_GLOBAL	relative to current temperature	°C	
T_REL_LOCAL	relative to AKO model temperature	°C	

Il modello del Diodo

General form	D <name> <(+) node> <(-) node> <model name=""> [area value]</model></name>
Examples	DCLAMP 14 O DMOD D13 15 17 SWITCH 1.5
Model form	.MODEL <model name=""> D [model parameters]</model>
Description	The diode is modeled as an ohmic resistance (RS /area) in series with an intrinsic diode. Positive current is current flowing from the anode through the diode to the cathode.

Arguments and options

<(+) node> The anode.

<(-) node> The cathode.

[area value]

Scales IS, ISR, IKF, RS, CJO, and IBV, and has a default value of 1. IBV and BV are both specified as positive values.

Il modello del Diodo: le equazioni

Diode equations for DC current

 $\sum D1$ Id = area · (Ifwd - Irev)

Ifwd = forward current = Inrm·Kinj + Irec·Kgen Inrm = normal current = **IS**·(exp(Vd/(**N**·Vt))-1) if: **IKF** > 0

then: Kinj = high-injection factor = $\sqrt{(IKF/(IKF+Inrm))}$ else: Kinj = 1

```
Irec = recombination current = ISR \cdot (exp(Vd/(NR \cdot Vt))-1)
```

```
Kgen = generation factor = ((1-Vd/VJ)^2+0.005)^{M/2}
```

```
Irev = reverse current = Irevhigh + Irevlow
```

 $Irev_{high} = IBV \cdot exp[-(Vd+BV)/(NBV \cdot Vt)]$

 $Irev_{low} = IBVL \cdot exp[-(Vd+BV)/(NBVL \cdot Vt)]$

Vd = voltage across the intrinsic diode only

 $Vt = k \cdot T/q$ (thermal voltage)

k = Boltzmann's constant

q = electron charge

T = analysis temperature (°K)

Tnom = nominal temperature (set using TNOM option)

FN ^{Markon Kunner C. Guazzoni, Prova Finale, Simulazioni Spice di Circuiti Elettronici}

Diode equations for capacitance

 $\begin{array}{ll} \mathsf{Cd} = \mathsf{Ct} + area \cdot \mathsf{Cj} \\ \mathsf{Ct} = \mathrm{transit\ time\ capacitance\ } = \mathsf{TT} \cdot \mathsf{Gd} \\ \mathsf{Gd} = \mathsf{DC\ conductance\ } = \mathrm{area} \cdot \frac{\mathsf{d}(\mathrm{Inrm} \cdot \mathsf{Kinj\ } + \mathrm{Irec} \cdot \mathsf{Kgen})}{\mathsf{dVd}} \\ \mathsf{Kinj\ } = \mathrm{high\ injection\ factor} \\ \mathsf{Cj\ } = \mathsf{CJO} \cdot (1 \cdot \mathsf{Vd}/\mathsf{VJ}) \cdot \mathsf{M} & \mathrm{IF:\ } \mathsf{Vd\ } < \mathsf{FC} \cdot \mathsf{VJ} \\ \mathsf{Cj\ } = \mathsf{CJO} \cdot (1 - \mathsf{FC}) - (1 + \mathsf{M}) \cdot (1 - \mathsf{FC} \cdot (1 + \mathsf{M}) + \mathsf{M} \cdot \mathsf{Vd}/\mathsf{VJ}) & \mathrm{IF:\ } \mathsf{Vd\ } > \mathsf{FC} \cdot \mathsf{VJ} \\ \mathsf{Cj\ } = \mathrm{junction\ capacitance\ } \end{array}$

Diode equations for temperature effects

 $IS(T) = IS \cdot exp[(T/Tnom-1) \cdot EG/(N \cdot Vt)] \cdot (T/Tnom)^{XTI/N}$ $ISR(T) = ISR \cdot exp[(T/Tnom-1) \cdot EG/(N \cdot Vt)] \cdot (T/Tnom)^{XTI/NR}$ $IKF(T) = IKF \cdot (1 + TIKF \cdot (T-Tnom))$ $BV(T) = BV \cdot (1 + TBV1 \cdot (T-Tnom) + TBV2 \cdot (T-Tnom)^2)$ $RS(T) = RS \cdot (1 + TRS1 \cdot (T-Tnom) + TRS2 \cdot (T-Tnom)2)$ $VJ(T) = VJ \cdot T/Tnom - 3 \cdot Vt \cdot In(T/Tnom) - Eg(Tnom) \cdot T/Tnom + Eg(T)$ $Eg(T) = silicon bandgap energy = 1.16 - .000702 \cdot T2/(T+1108)$ $CJO(T) = CJO \cdot (1 + M \cdot (.0004 \cdot (T-Tnom) + (1-VJ(T)/VJ)))$

Il modello del Diodo: i parametri - 1

	Model parameters [*]	Description	Unit	Default
	AF	flicker noise exponent		1.0
D 🔽 D1	BV	reverse breakdown knee voltage	volt	infinite
	CJO	zero-bias p-n capacitance	farad	0.0
	EG	bandgap voltage (barrier height)	eV	1.11
	FC	forward-bias depletion capacitance coefficient		0.5
	IBVL	low-level reverse breakdown knee current	amp	0.0
	IBV	reverse breakdown knee current	amp	1E-10
	IKF	high-injection knee current	amp	infinite
	IS	saturation current	amp	1E-14
	ISR	recombination current parameter	amp	0.0
	KF	flicker noise coefficient		0.0
	м	p-n grading coefficient		0.5
	N	emission coefficient		1.0
ATTON	NBV	reverse breakdown ideality factor		1.0
	NBVL	low-level reverse breakdown ideality factor		1.0

C. Guazzoni, Prova Finale, Simulazioni Spice and an carrier control

Il modello del Diodo: i parametri - 2

Quando non si sa qualcosa....

