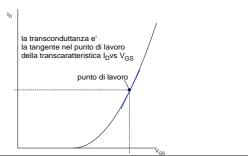
Fondamenti di Elettronica

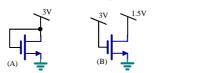
20 Nov. 2001


Soluzioni "stringate"

Es. 1

Sia dato un transistore MOSFET a canale n.

- a) Definire analiticamente la trasconduttanza quando il MOSFET funziona in saturazione ed esprimerla in funzione delle grandezze di
- b) Illustrare graficamente il significato della trasconduttanza.

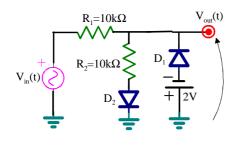

a) $g_m = 2k(V_{GS} - V_T) = 2\sqrt{kI_D}$

Es. 2

- a) Dire in che zona di funzionamento si trovano i MOSFET nei due casi in figura, spiegandone il perché.
- b) Calcolare la corrente di drain in almeno uno dei due casi.

$$V_T = 1V$$
 $K = 1/2 \text{MINC}_{ox} \text{MV}/L = 0.3 \text{mA}/V^2$

MOSFET A: opera in zona di saturazione (c'e' canale al source e pinch-off in prossimita' del drain)

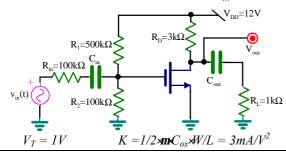

MOSFET B: opera in zona ohmica (c'e' canale sia al source che al

b) $I_{DA} = k(V_{GS} - V_T)^2 = 1.2 \, mA$ $I_{DB} = k \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right] = 1.125 \, mA$

Es. 3

Il segnale è sinusoidale del tipo $V_{in}(t)=5 \times in(\mathbf{w}t)$ [V]. Si modellizzino i diodi con una soglia di "accensione" di 0.7V.

- a) Indicare quale diodo si accende e per quale valore di V_{in} avviene l'accensione sia nel semiperiodo positivo che negativo.
- b) Disegnare l'andamento di $V_{out}(t)$ in un periodo di V_{in} .

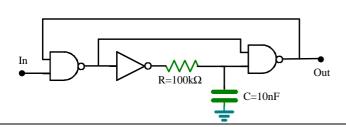

semiperiodo positivo: D1 off – D2 on per $V_{in} \ge 0.7V$, D2 off per $V_{in} < 0.7V$ semiperiodo negativo: D2 off - D1 on per V_{in}≤-2.7V, D1 off per V_{in}>-2.7V

ut=0.7+(Vin-0.7)*R2/(R1+R2) punto angoloso

Es. 4

Nell'amplificatore in figura si ha $C_{in} >> C_{out}$. Calcolare:

- a) la polarizzazione (correnti e tensioni, senza segnale).
- b) il guadagno v_{out}/v_{in} a media frequenza (C_{in} in "corto", C_{out} "aperta");
- c) il guadagno v_{out}/v_{in} ad alta frequenza (C_{in} e C_{out} in "corto").
- d) Discutere infine la funzione del condensatore C_{in} .

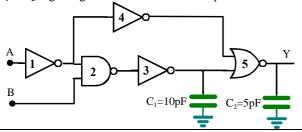


- $V_G = 2V; V_D = 3V; V_{out} = 3V; V_{RL} = 0V;$ $I_{R1} = 20\mu A$; $I_{R2} = 20\mu A$; $I_{D} = 3mA$; $I_{RL} = 0V$
- b) $g_m = 6mA/V$; $v_{out} / v_{in} = -g_m R_D \frac{R_1 \| R_2}{R_1 \| R_2 + R_{in}} = -8.2$ c) $v_{out} / v_{in} = -g_m (R_D \| R_L) \frac{R_1 \| R_2}{R_1 \| R_2 + R_{in}} = -2.05$
- d) Il condensatore C_{in} serve per disaccoppiare il generatore di segnale v_{in} dal gate in modo da non alterare il punto di polarizzazione del transistore. C_{in} e' un circuito aperto per la continua e deve essere dimensionata in maniera tale da essere un cortocircuito per tutte le frequenze di segnale di

Es. 5

Al circuito riportato in basso si applica l'ingresso mostrato qui a lato, caratterizzato dall'essere *low* per un tempo di *Is*.

- a) Disegnare l'andamento temporale dell'uscita Out, considerando nullo il ritardo di propagazione delle porte e pari a $V_{DD}/2$ la loro soglia di commutazione.
- b) Dire cosa cambia se l'ingresso *In* resta basso per soli $20\mu s$ (ossia $t_2=t_1+20\mu s$).



Es. 6

Il circuito è alimentato a 5V.

- a) Scrivere la tabella della verità della funzione implementata.
- b) Calcolare il ritardo di propagazione ingresso-uscita quando agli ingressi A e B connessi insieme si applica la transizione *high-low* (ignorare la presenza di C_1 e C_2 e supporre che il ritardo di propagazione di ciascuna porta sia t_P =50ns).
- c) Calcolare la potenza dinamica dissipata da ciascuna porta quando A=low e B è un clock a IMHz, sapendo che oltre a C_I e C_2 , ogni ingresso contribuisce con 3pF.

a)			
	A	В	Y
	0	0	1
	$0 \\ 0$	1	0
	1	0	0
	1	1	0

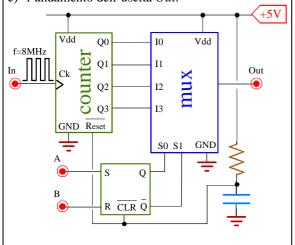
 $T_{p \text{ max}} = t_{p1} + t_{p4} + t_{p5} = 150 \text{ns}$

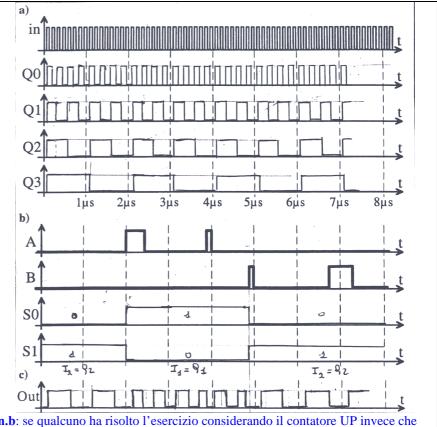
$$P_1 = 0$$

$$P_2 = 75 \text{ mW}$$

$$P_3 = 325 \text{ mW}$$

$$P_5 = 125 \text{ mW}$$


DOWN ma e' coerente con se stesso, va bene ugualmente.


Es. 7

All'instante t=0 il circuito viene alimentato a 5V; sempre a t=0 la rete RC assicura un istantaneo reset automatico del counter modulo-16 e del flipflop. I segnali di comando sono mostrati qui a lato; il clock è a 8MHz. Il flip-flop è di tipo attivo alto (ossia quando si asserisce S, Q va high).

Disegnare:

- a) gli andamenti delle uscite Q0÷Q3 del counter.
- b) gli andamenti degli ingressi S0 e S1 del mux.
- c) l'andamento dell'uscita Out.

