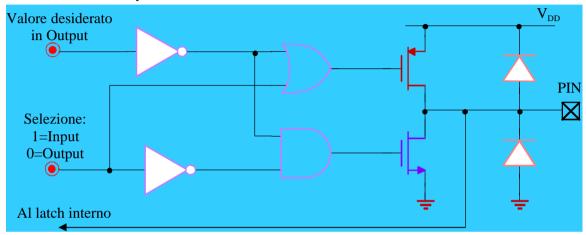
Politecnico di Milano

Microcontrollori 2/3

ing. Enrico Migliore


Fondamenti di Elettronica

Porte di I/O

Tipologie:	MODE	AVAILABLE ON(1)	SCHEMATIC
 Input digitale ingresso CMOS normale o a trigger di Schmidt a volte con pull-up 	Input	PA0-PA7 PB0-PB5, PB6-PB7 PC0-PC4	Data in Interrupt
- Input con Interrupt	Input with pull up	PA0-PA7 PB0-PB5, PB6-PB7 PC0-PC4	Data in
•abilitato a generare •un interrupt nel μC	Input with pull up with interrupt	PA0-PA7 PB0-PB5, PB6-PB7 PC0-PC4	Data in
 Input analogico •per inviare segnali •analogici all'ADC del μC 	Analog Input	PA0-PA7 PC0-PC4	ADC
	Open drain output 5mA	PA0-PA7 PC0-PC4	
- Output digitale	Open drain output 20mA	P80-P85, P86-P87	Data out
normalmente livelli CMOSa volte open-drainpuò avere pull-up interno	Push-pull output 5mA	PAO-PA7 PCO-PC4	Data out
•può essere tri-state	Push-pull output 20mA	PB0-PB5, PB6-PB7	

Porte di I/O

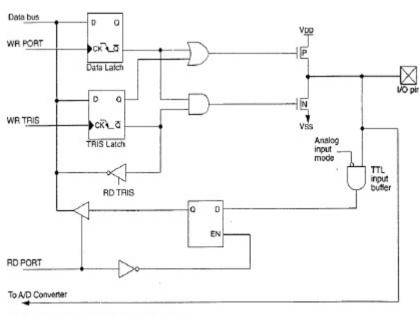
Inizializzazione interna dei pin di I/O:

PIC16C74A:

INITIALIZING PORTA: EXAMPLE

CLRF PORTA BSF STATUS, RPO

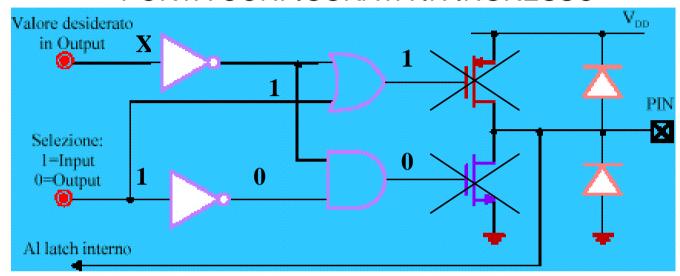
MOVLW 0xCF

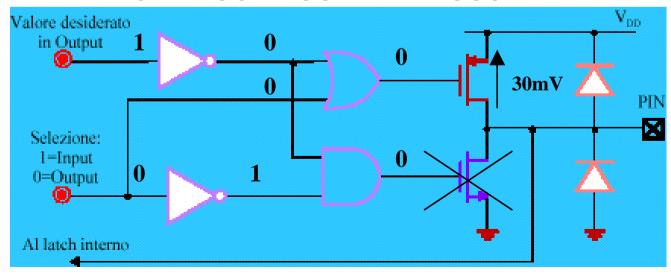

MOVWF TRISA

; Initialize PORTA by clearing output latches ;Select Bank 1

;initialize data direction 11001111

;Set RA<3:0> as inputs ;RA<5:4> as outputs


;TRISA<7:6> always read as '0'


Note: I/O pin has protection diodes to VDD and Vss.

Porte di I/O

PORTA CONFIGURATA IN INGRESSO

PORTA CONFIGURATA IN USCITA

Idea base: la CPU sta eseguendo il programma principale. Si verifica un evento (es. un pin d'ingresso cambia stato) che necessita in tempi brevi di essere riconosciuto dalla CPU....

Modalità di gestione:

- vettore di interrupt
- polling

ogni periferica chiamante ha la sua routine di gestione

c'è un'unica routine; il firmware dovrà individuare la periferica chiamante

Stack:

- salvare il ProgramCounter
- salvare i registri importanti

per sapere da dove continuare, una volta gestita la routine di interrupt per evitare di modificare dati importanti

```
MOVWF
         W_TEMP
                           ;Copy W to TEMP register, could be bank one or zero
SWAPF
         STATUS, W
                           ;Swap status to be saved into W
ECF
         STATUS, RPO
                           ; Change to bank zero, regardless of current bank
MOVWF
         STATUS_TEMP
                           ; Save status to bank zero STATUS TEMP register
: (ISR)
SWAPF
         STATUS_TEMP, W
                           ;Swap STATUS_TEMP register into W
                           ; (sets bank to original state)
MOVWE
         STATUS
                           ; Move W into STATUS register
SWAPF
         W_TEMP, F
                           ; Swap W TEMP
SWAPF
         W_TEMP, W
                           ;Swap W_TEMP into W
```

Utilità:

• gestire eventi imprevedibili allarme, finecorsa, pulsante...

• evitare cicli di attesa non si continua a monitorare l'evento, poiché sarà lui a chiamare

• eseguire prontamente routine per ogni chiamante si eseguiranno operazioni distinte

Modalità di gestione:

• vettore di interrupt ogni periferica chiamante ha la sua routine di gestione

• polling c'è un'unica routine; il firmware dovrà individuare la periferica chiamante

Stack:

• salvare il ProgramCounter

• salvare i registri importanti

per sapere da dove continuare, una volta gestita la routine di interrupt

MCVWF W_TEMP ;Copy W to TEMP register, could be bank one or zero SWAPF STATUS,W ;Swap status to be saved into W BCF STATUS,RPO ;Change to bank zero, regardless of current bank MOVWF STATUS_TEMP ;Save status to bank zero STATUS_TEMP register : :(ISR)

per evitare di modificare dati importanti

:
SWAPF STATUS_TEMP,W ;Swap STATUS_TEMP register into W ; (sets bank to original state)

MOVWF STATUS ;Move W into STATUS register

SWAPF W_TEMP,F ;Swap W_TEMP

SWAPF W_TEMP,W ;Swap W_TEMP into W

Gestione:

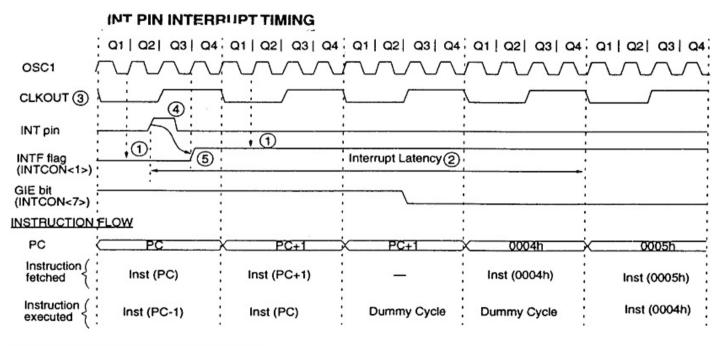
- impostando dei registri dedicati
- firmware della routine

abilitazione/disabilitazione dell'interrupt, flag dell'avvenuta chiamata...

INTCON REGISTER FOR PIC16C72/73/73A/74/74A (ADDRESS 0Bh, 8Bh)

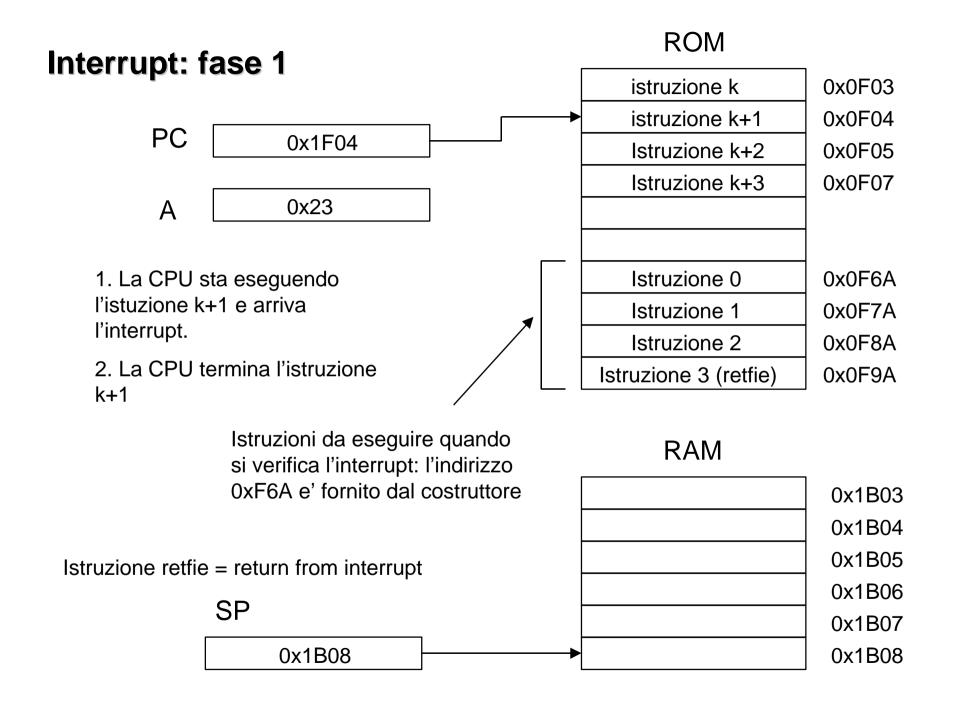
	- 114	TOOK	LGISTE	TONF	10100121	3// 3A//4	UA) API	DNESS UBII, OBII)
R/W-0	R/W-0	Ft/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
oit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	GIE:(1) G	lobal Inter	rupt Enab	le bit				
	1 = Enab	les all un-r les all inte	masked in					
bit 6:	1 = Enab	ripheral In les all un- bles all per	masked p	eripheral i	nterrupts			
bit 5:	1 = Enab	R0 Overfloor les the TM ples the TM	IR0 interr	upt	bit			
bit 4:	1 = Enab	30/INT Ext les the RE bles the RI	30/INT ext	ernal inter	rrupt			
bit 3:	1 = Enab	Port Cha les the RE ples the RI	3 port cha	nge interr	upt			
bit 2:	1 = TMR	R0 Overfl 0 register 0 register	has overf	owed (mu	t ist be cleare	ed in softwa	are)	
bit 1:	1 = The f	80/INT Ext RB0/INT e RB0/INT e	xternal in	errupt occ	bit curred (mus not occur	t be cleare	d in softwa	are)
bit 0:	1 = At lea		the RB7:	RB4 pins o	bit changed sta hanged stat		e cleared in	n software)
Note 1:	may be ι	unintention	nally re-en	abled by 1	n interrupt of the RETFIE escription.	occurs while instruction	le the GIE i in the use	bit is being cleared, the GIE bit 's Interrupt Service Routine.

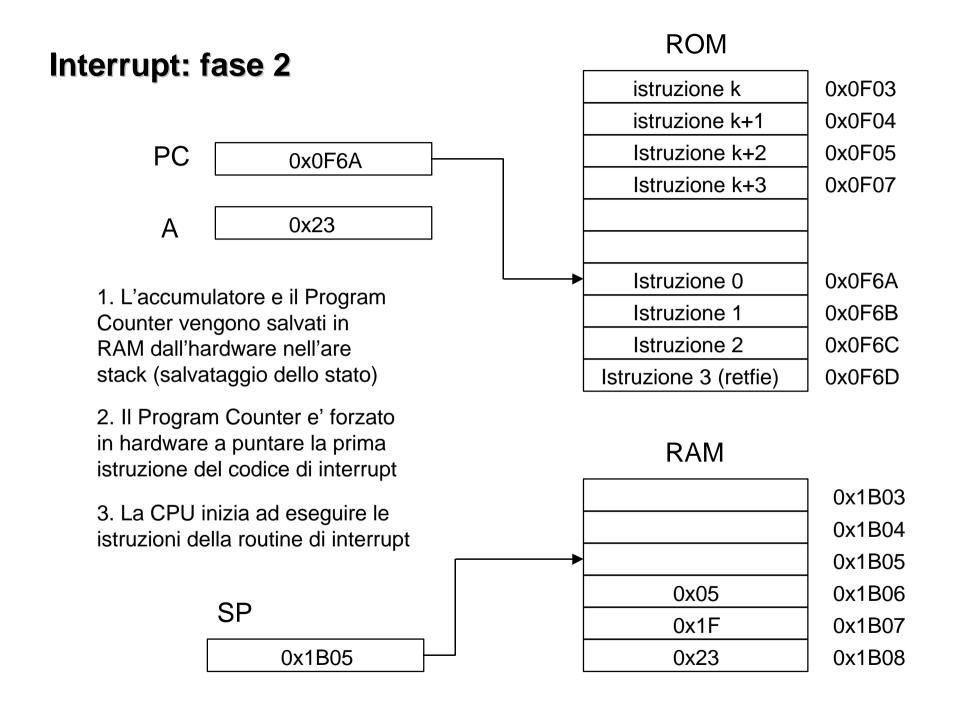
PIE1 REGISTER PIC16C73/73A/74/74A (ADDRESS 8Ch)

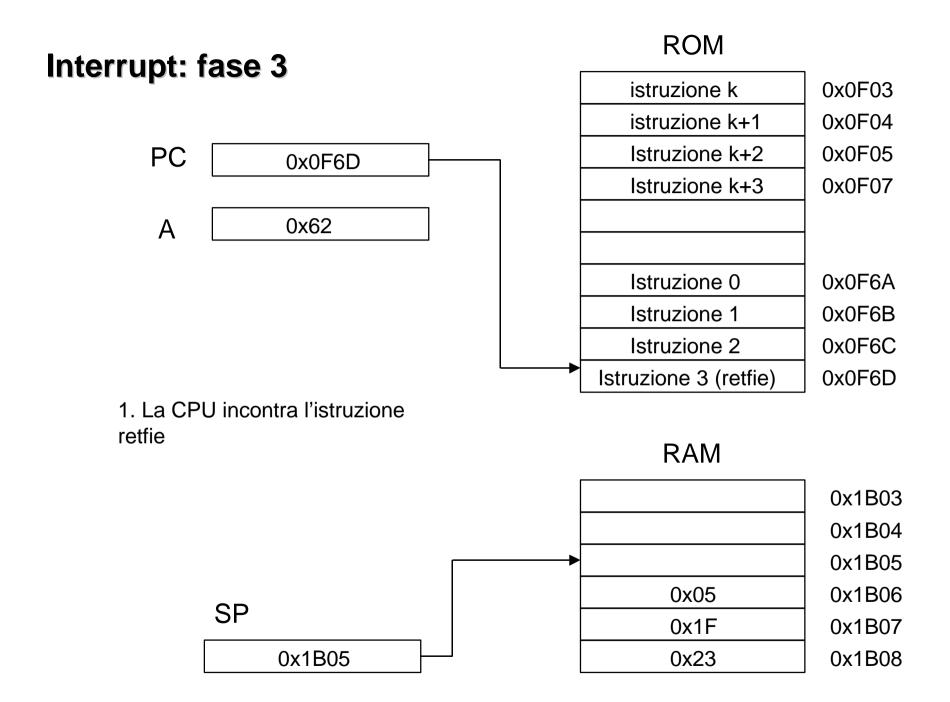

R/W-0	R/W-0	R/W-0	R/W-0	RW-0	R/W-0	R/W-0	R/W-0	
PSPIE(1)		RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	1 = Enabl	Parallel S les the PS les the PS	P read/wr	ite interru		Enable bit		
bit 6:	1 = Enab	O Converte les the A/E les the A/I	interrupt		oit			
bit 5:	1 = Enab	SART Reco les the US bles the US	ART rece	ive interru	pt			
bit 4:	1 = Enab	ART Tran les the US les the US	ART trans	smit intern	upt			
bit 3:	1 = Enab	ynchrono les the SS les the SS	P interrup	t	upt Enable i	bit		
bit 2:	1 = Enab	CCP1 Intelles the CC	P1 interru	upt				
bit 1:	1 = Enab	TMR2 to les the TM bles the TM	1R2 to PR	2 match in				
bit 0:	TMR11E:	TMR1 Ov	erflow inte	errupt Ena	able bit			

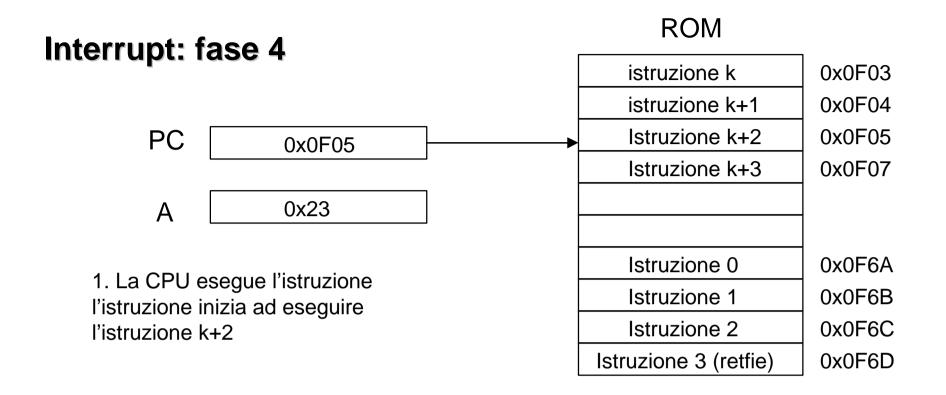
1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt

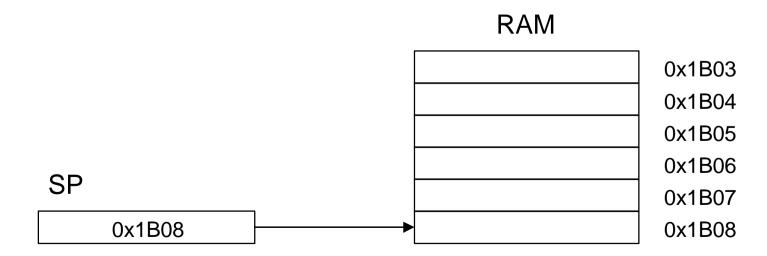
Note 1: PIC16C73 and PIC16C73A devices do not have a Parallel Slave Port implemented, this bit location is reserved on these two devices, always maintain this bit clear.


Latenza:

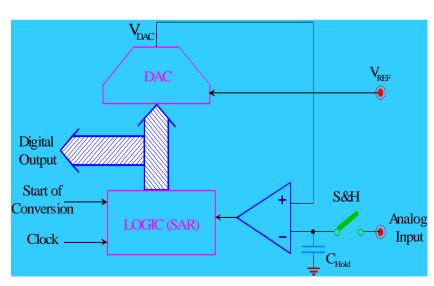

- esecuzione non immediata della routine di interrupt
- temporizzazione

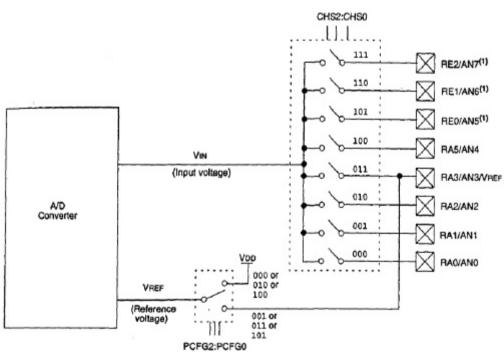



Note 1: INTF flag is sampled here (every Q1).
2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time.
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.


3: CLKOUT is available only in RC oscillator mode.
4: For minimum width of INT pulse, refer to AC specs.
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

Convertitore Analogico/Digitale:


- multiplexer analogico a più ingressi
- campionatore S&H
- ADC (SuccessiveApproximationRegister)


Risoluzione:

• numero di bit

• FullScaleRange $FSR = V_{ref}$

• LeastSignificantBit LSB = $FSR / 2^n$

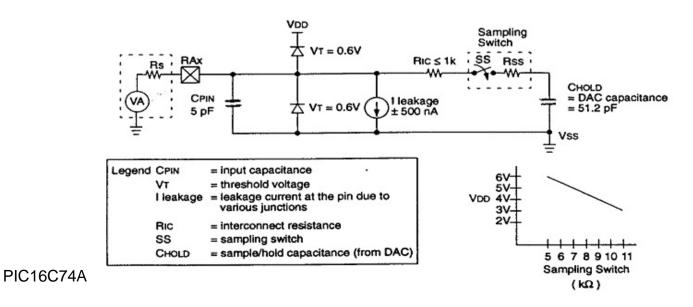
Errori:

• statici correnti di leakage, resitenze parassite

 $R_S < \frac{1}{2}LSB / I_{leakage} = 10k\Omega$

• dinamici carica esponenziale del condensatore del S&H

$$V_{ref} - \frac{1}{2}LSB = (1 - e^{-t/\tau}) \cdot V_{ref}$$


Tempistiche:

• di acquisizione carica esponenziale di C_{HOLD}

$$T_a = -C_{HOLD} (R_S + R_{IC} + R_{SS}) \cdot ln \frac{\frac{1}{2}LSB}{V_{ref}} = 5.7 \mu s$$

• di conversione durata della conversione nell'ADC

$$T_{conv} = 9.5 \cdot T_{AD}$$

Configurazione:

• tramite registri dedicati

ADCONO REGISTER, PIC16C72/73/73A/74/74A (ADDRESS 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	5 (= 1	ADON	R = Readable bit
bit7		200000					bit0	W = Writable bit
								U = Unimplemented bit,
								read as '0'
								- n = Value at POR reset

bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRC (clock derived from an RC oscillation)

bit 5-3: CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4)

101 = channel 5, (RE0/AN5)(1)

110 = channel 6, (RE1/AN6)(1)

111 = channel 7, (RE2/AN7)(1)

bit 2: GO/DONE: A/D Conversion Status bit

If ADON = 1

1 = A/D conversion in progress (setting this bit starts the A/D conversion)

0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete)

bit 1: Unimplemented: Read as '0'

bit 0: ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shutoff and consumes no operating current

BSF STATUS, RPO ; Select Page 1

CLRF ADCON1 ; Configure A/D inputs BSF PIE1,ADIE ; Enable A/D interrupts

BCF STATUS, RPO ; Select Page 0

MOVLW 0XC1 ; A/D is on , Ch0 is selected

MOVWF ADCON0 ;

BCF PIR1, ADIF ; Clear A/D interrupt flag bit

BSF INTCON, PEIE ; Enable peripheral interrupts

BSF INTCON, GIE ; Enable all interrupts

:

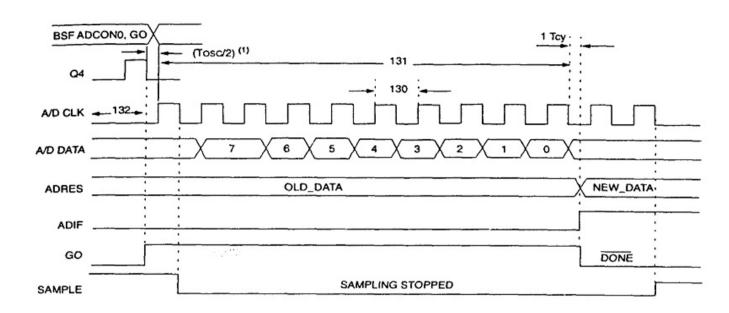
BSF ADCON, GO ; Start A/D Conversion

:

ADCON1 REGISTER, PIC16C72/73/73A/74/74A (ADDRESS 9Fh)

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	2 <u>-1-1-1-1</u>
The Co	2 -12/	# - 1 4	- " - " %	% – `-	PCFG2	PCFG1	PCFG0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented
								bit, read as '0'
								- n = Value at POR reset

bit 7-3: Unimplemented: Read as '0'


bit 2-0: PCFG2:PCFG0: A/D Port Configuration Control bits

PCFG2:PCFG0	RA0	RA1	RA2	RA5	RA3	RE0 ⁽¹⁾	RE1 ⁽¹⁾	RE2 ⁽¹⁾	VREF
000	Α	Α	Α	Α	Α	Α	Α	A	VDD
001	Α	Α	Α	Α	VREF	Α	Α	Α	RA3
010	Α	Α	Α	Α	Α	D	D	D	VDD
011	Α	A	Α	Α	VREF	D	D	D	RA3
100	Α	Α	D	D	Α	D	D	D	VDD
101	Α	Α	D	D	VAEF	D	D	D	RA3
11x	D	D	D	D	D	D	D	D	-

A = Analog input

D = Digital I/O

Timing:

A/D CONVERSION REQUIREMENTS

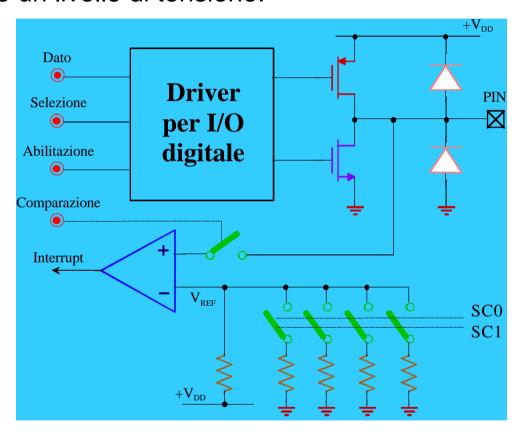
Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions	
130	TAD	A/D clock period	PIC16C73/74	1.6	_		μs	Tosc based, VREF ≥ 3.0V	
			PIC16LC73/74	2.0	_	_	μs	Tosc based, VREF full range	
			PIC16C73/74	2.0	4.0	6.0	μs	A/D RC Mode	
			PIC16LC73/74	3.0	6.0	9.0	μs	A/D RC Mode	
131	TCNV	Conversion time (not including S/H time) (Note 1)		-	9.5TAD	_	_		
132	TACQ	Acquisition time		Note 2	20	_	μs		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: ADRES register may be read on the following TcY cycle.
 - 2: See Section 13.1 for min conditions.

Specifiche elettriche:

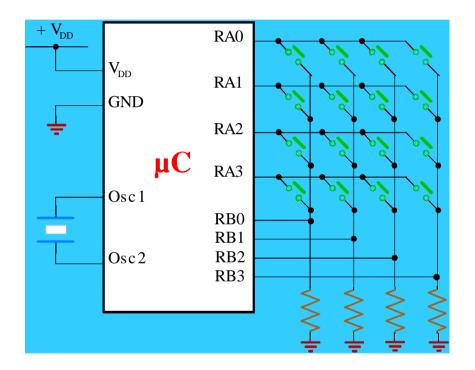
Parameter No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions
	NR	Resolution	_	_	8-bits	_	VREF = VDD = 5.12V, VSS ≤ AIN ≤ VREF
	NINT	Integral error	_	-	less than ±1 LSb	-	VREF = VDD = 5.12V, VSS ≤ AIN ≤ VREF
	NDIF	Differential error	_	_	less than ±1 LSb	-	VREF = VDD = 5.12V, VSS ≤ AIN ≤ VREF
	NFS	Full scale error	_	_	less than ±1 LSb	_	VREF = VDD = 5.12V, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	_	VREF = VDD = 5.12V, VSS ≤ AIN ≤ VREF
	_	Monotonicity	_	guaranteed	_	-	Vss ≤ Ain ≤ VREF
	VREF	Reference voltage	3.0V		VDD + 0.3	٧	
	VAIN	Analog input voltage	Vss - 0.3	_	VREF + 0.3	٧	
	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
	ÍAD	A/D conversion cur- rent (VDD)	_	180	_	μА	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_	_	1 10	mΑ μΑ	During sampling All other times

^{*} These parameters are characterized but not tested.


Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

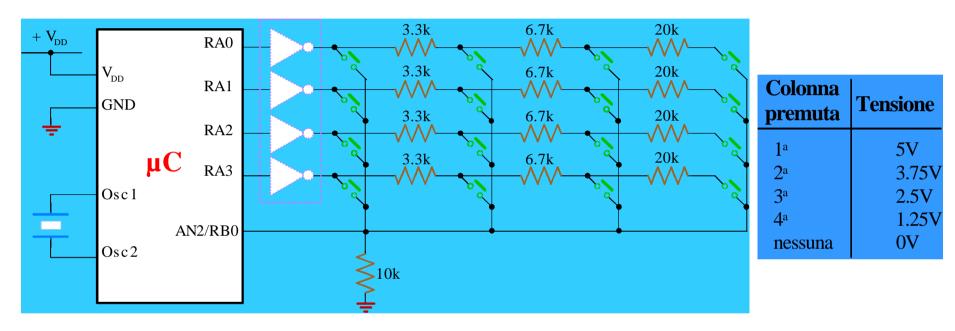
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Comparatore o Watchdog analogico

Per monitorare un livello di tensione:

Esempi di impiego degli I/O


Esempio 1: Multiplexing Digitale di una tastiera

Si risparmiano linee digitali

Esempi di impiego degli I/O

Esempio 2: Acquisizione analogica

Si utilizza un ritorno analogico Gli si può fare scatenare un interrupt, ma...

$$V_{\text{max,min}} = 5 \cdot \frac{(10K \pm 10\%)}{(10K \pm 10\%) + (3.3K + 6.7K + 20K \text{ m}10\%)} V_{\text{max,min}} = 5 \cdot \frac{(10K \pm 10\%)}{(10K \pm 10\%) + (3.3K + 6.7K \text{ m}10\%)}$$