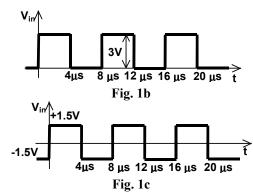

Fondamenti di Elettronica - Ingegneria Elettronica -2004/05 1^a prova in itinere – 24 novembre 2005


Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Risolvere obbligatoriamente i punti in grassetto.

Esercizio 1

Si consideri il circuito riportato nella Fig. 1a.

- Disegnare in un diagramma temporale, a) quotandone tutti i punti significativi, l'andamento della tensione V_{out} quando in ingresso e' applicato il segnale mostrato in figura 1b.
- Disegnare in un diagramma temporale, b) quotandone tutti i punti significativi, l'andamento della tensione V_{out} quando in ingresso e' applicato il segnale mostrato in figura 1c.

Esercizio 2

Si consideri il circuito a MOSFET riportato nella Fig. 2, nel quale i_{in} e' un generatore di corrente di segnale.

- a) Determinare le tensioni a tutti i nodi e le correnti in tutti i
- b) Determinare il trasferimento di piccolo segnale v_{out}/i_{in} a bassa frequenza (C aperta).
- Determinare le singolarita' introdotte dalla capacita' C. c)
- d) Dimensionare il valore della resistenza R da sostituire al generatore di corrente Io perche' non cambi la polarizzazione dello stadio. Nelle ipotesi di realizzare la resistenza R in tecnologia integrata, avendo a disposizione un'impiantazione di Arsenico (drogante di tipo n) con dose pari a $D=1\times10^{13} cm^{-2}$. determinare il numero di quadri da cui deve essere costituita la resistenza. ($\mu_n = 1200 cm^2/(Vs)$)
- Se all'alimentazione positiva V_{dd} e' sovrapposto un disturbo e) sinusoidale con frequenza pari a 500 Hz e ampiezza pari a 150 mV, determinare l'ampiezza del disturbo risultante in uscita. Come cambia l'ampiezza del disturbo in uscita se al generatore di corrente e' sostituita la resistenza R dimensionata al punto d)?

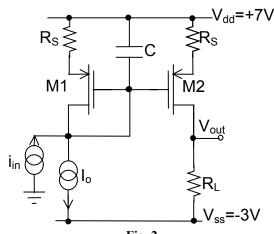
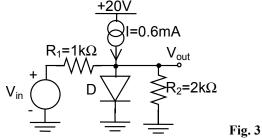



Fig. 2
$$|k_p| = \frac{1}{2} \mu_p C_{ox}(W/L) = 250 \ \mu A/V^2$$

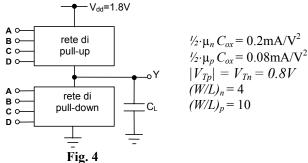
$$|V_{Tp}| = IV \qquad r_0 = \infty$$

$$R_s = 2k\Omega \qquad R_L = 3k\Omega$$

$$I_0 = ImA \qquad C = 25pF$$

Esercizio 3

Si consideri il circuito riportato nella Fig. 3. Il diodo D conduce quando e' polarizzato in diretta con una tensione ai suoi capi pari a 0.7 V.


- Disegnare in un diagramma temporale, quotandone tutti i punti significativi, l'andamento della tensione V_{out} quando in ingresso e' applicata una sinusoide di ampiezza 3 V e frequenza
- b) Determinare la potenza dissipata dal diodo D, quando la tensione V_{in} e' pari a +3V.

Esercizio 4

Si consideri la porta logica in tecnologia CMOS mostrata in Fig. 4, che svolge la funzione logica $Y = [(A \cdot B) + C] \cdot D$.

- Disegnare la rete di pull-up e la rete di pulla) down.
- Determinare il valore massimo che puo' assumere b) la capacita' C_L, se si vuole garantire che i tempi di commutazione alto-basso e basso-alto nella condizione piu' gravosa non siano superiori a 6ns.

