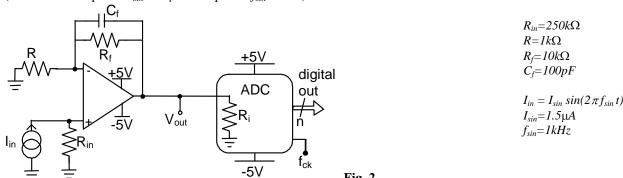

Fondamenti di Elettronica - Ingegneria Elettronica - 2005/06 2^a prova in itinere – 13 febbraio 2006

Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Risolvere obbligatoriamente i punti in grassetto

Esercizio 1


Si consideri il circuito riportato nella Fig. 1a.

- a) Disegnare la caratteristica di trasferimento ingresso-uscita del blocco A e del blocco B, quotandone tutti i punti significativi. (Si assuma che l'uscita degli amplificatori operazionali saturi alle tensioni di alimentazione e che gli amplificatori operazionali siano ideali).
- b) Disegnare in un diagramma temporale, quotandone tutti i punti significativi, l'andamento delle tensioni di uscita $V_{out,a}$ e $V_{out,b}$ quando il segnale in ingresso e' quello riportato in Fig. 1b. (Si assuma che gli amplificatori operazionali siano ideali).
- c) Se l'amplificatore operazionale del blocco A e' caratterizzato da una resistenza di uscita pari a $r_{out}=1k\Omega$ e da un guadagno ad anello aperto $A_0=72$ dB, disegnare in un diagramma temporale, quotandone tutti i punti significativi, il nuovo andamento delle tensioni di uscita $V_{out,a}$ e $V_{out,b}$.

Esercizio 2

Si consideri il circuito, riportato nella Fig. 2, per la conversione mediante un convertitore analogico digitale del segnale I_{in} (sinusoide di ampiezza $I_{sin}=1.5\mu A$ e frequenza $f_{sin}=1kHz$).

- a) Determinare il trasferimento ideale V_{out}/I_{in} a bassa frequenza (C_f circuito aperto).
- b) Disegnare il diagramma di Bode del modulo del trasferimento ideale V_{out}/I_{in} , quotandone tutti i punti significativi.
- c) Determinare il numero di bit minimo richiesto all'ADC per garantire una risoluzione del 5‰ sul segnale di corrente applicato in ingresso.
- d) Dimensionare il valore della resistenza R_x da introdurre nel circuito per minimizzare l'effetto delle correnti di bias senza variare il guadagno dello stadio. Giustificare la risposta e specificare dove vada inserita la resistenza R_x .
- e) Se l'ADC e' caratterizzato da una resistenza di ingresso finita R_i , determinare il minimo valore che puo' assumere tale resistenza nel caso in cui l'amplificatore operazionale sia caratterizzato da una corrente di uscita massima pari a 5mA.
- f) Determinare la massima ampiezza che puo' assumere una componente spuria sovrapposta al segnale, supposta sinusoidale di frequenza $f=20 \, MHz$, per pesare meno di $1 \, LSB$ (Si consideri ideale l'amplificatore operazionale).
- g) Determinare il valore di prodotto guadagno-banda (GBWP) richiesto perche' il polo ad anello chiuso dovuto all'amplificatore operazionale sia situato a 100 MHz.
- h) Determinare la frequenza di clock da fornire all'ADC, nel caso sia del tipo a gradinata e nel caso sia del tipo ad approssimazioni successive, per garantire un numero di campioni minimo pari a 9 entro ogni periodo della sinusoide. Si assuma che l'errore massimo ammesso per ogni campione sia pari a 1 LSB.