Fondamenti di Elettronica - Ingegneria Elettronica – a.a. 2012/13 Unscheduled Examination – May 10th, 2013

State clearly the question you are answering. E.g. 1a). Solve first questions in bold. Solve first questions in bold. This is a 3-hour in-class closed-book exam.

Exercise 1

Let's consider the circuit shown in Fig. 1a.

a) Draw in a time diagram, providing values for all the relevant points, the curve of the voltage V_{out}(t), when the input current is the one shown in Fig. 1b (*non-periodic*). Provide justification for your answer.
b) Draw in a time diagram, providing values

for all the relevant points, the curve of the voltage $V_{out}(t)$, when the input current

is the one shown in Fig. 1c (non-

periodic). Provide justification for your

answer. **Exercise 2**

Let's refer to the MOSFET circuit shown in Fig. 2. v_{in} is a small signal voltage generator.

- a) Find the value of the form factor $(W/L)_2$ of transistor M2 that guarantees a bias current of 1 mA flowing in M2. Find, then, the DC voltages at all the nodes and the DC current in all the R_{in} branches
- b) Find the small-signal voltage gain $v_{out,2}/v_{in}$ at low frequency \lor (i.e. consider *C* as open circuit).
- c) Draw the magnitude Bode diagram of the small signal voltage transfer v_{out}/v_{in} .
- d) Find the maximum allowed value for resistor R_d that guarantees that both transistors are operating in saturation.

Exercise 3

Let us consider the data acquisition system shown in Fig. 3. Let us assume that the operational amplifier saturates at the power supply voltages.

- a) Draw the diagram of the input-output transfer characteristics $(v_{out,2}/v_{out,1})$, quoting all the relevant points and showing the reasoning performed to compute the behaviour of the transfer characteristics.
- b) Draw the magnitude Bode diagram of the transfer function $V_{out,1}/V_{in}$, quoting all the relevant points.
- c) Let's consider a DC input voltage equal to -100mV. Find the limiting values of the drive voltage to be applied to the gate of the MOS transistor able to guarantee an ideally infinite resistance $R_{ds,off}$ during the Hold phase and a resistance $R_{ds,off}$ during the Sample phase.
- d) Determine the minimum value of the Hold capacitor (C_H) that guarantees that a droop rate below $\frac{1}{2}$ LSB/ms, if the opamp used for the buffer features a differential input resistance $R_{id} = 10 M\Omega$ and an open loop gain $A_0 = 70 dB$.
- e) Find the minimum value of the ADC clock frequency needed to properly sample a *10 kHz* input sinusoidal signal, if the ADC is based on the staircase working principle (Let's assume a duration of the Sample Phase equal to the clock period).

80

Fig. 1c

t (µs)

t (µs)