Fondamenti di Elettronica - Ingegneria Elettronica - a.a. 2013/14 Midterm Examination - May 9th, 2014

State clearly the question you are answering. E.g. 1a). Solve first questions in bold. Solve first questions in bold. This is a 3-hour in-class closed-book exam.

Exercise 1

Let's consider again the circuit shown in Fig. 1a.

- a) Draw in a time diagram, providing values for all the relevant points, the curve of the voltage $V_{out}(t)$, when the input current is the one shown in Fig. 1b (*non-periodic*), if $T = 50 \,\mu s$. Provide justification for your answer.
- b) Draw in a time diagram, providing values for all the relevant points, the curve of the voltage $V_{out}(t)$, when the input current is the one shown in Fig. 1b (*non-periodic*), if $T = 3.5 \,\mu$ s. Provide justification for your answer.

Exercise 2

Let's refer to the MOSFET circuit shown in Fig. 2. v_{in} is a small signal voltage generator.

- a) Find the circuit bias point (i.e. the DC voltages at all the nodes and the DC current in all the branches).
- b) Find the small-signal voltage gain v_{out}/v_{in} at low frequency (i.e. consider C_1 e C_{out} as open circuit).
- c) Find the singularities introduced by capacitors $C_1 \in C_{out}$ in the transfer function v_{out}/v_{in} .
- d) Find the maximum allowed range for the output voltage that guarantees that both transistors are operating in saturation.

Exercise 3

Let's consider the CMOS logic gate shown in Fig. 3, that implements the logic function $Y = \overline{(A+B) \cdot (C+A)}$.

- a) Implement the logic function in conventional CMOS technology in its minimal form, drawing the pull-up and the pull-down networks and justifying all the choices.
- b) Find the minimum time needed for the output to switch from V_{dd} to $(V_{dd} V_T)$, following an appropriate input transition.

Exercise 4

Let us consider the circuit shown in Fig. 4a. The diodes D_1 and D_2 are on when forward biased with 0.7 V. Fig. 4b shows the time diagram of the input voltage V_{in} .

Draw the time diagram of the output voltage $V_{out}(t)$, quoting all the relevant points and providing adequate justification for your answer.

Fig. 4b