Fondamenti di Elettronica - Ingegneria Elettronica - a.a. 2014/15 Midterm Examination - May 7th, 2015

State clearly the question you are answering. E.g. 1a). Solve first questions in bold. Solve first questions in bold. This is a 3-hour in-class closed-book exam

Exercise 1

Let's consider again the circuit shown in Fig. 1a.

- a) Draw in a time diagram, providing values for all the relevant points, the curve of the current $I_{out}(t)$, when the input voltage is the one shown in Fig. 1b (*periodic*), if T = 48 ms. Provide justification for your answer.
- b) Draw in a time diagram, providing values for all the relevant points, the curve of the voltage $I_{out}(t)$, when the input voltage is the one shown in Fig. 1b (*periodic*), if T = 2.4 ms. Provide justification for your answer.

Exercise 2

Let's refer to the MOSFET circuit shown in Fig. 2. i_{in} is a small signal current generator.

- a) Find the value of resistor R_s that provides 1 mA static current in the transistor. Find, then, the circuit bias point (i.e. the DC voltages at all the nodes and the DC current in all the branches).
- b) Find the small-signal transfer function v_{out}/i_{in} at high frequency (*C* e C_2 short-circuited).
- c) Find the singularities introduced by capacitors $C \in C_2$ in the transfer function v_{out}/i_{in} .
- d) Find the maximum current amplitude, in the case of a sinusoidal signal at $5 H_z$ frequency, that ensures a linearity error below or equal to 4%.

Exercise 3

Let's consider the CMOS logic gate shown in Fig. 3, that implements the logic function $Y = \overline{(A+B) \cdot (C+D)} + \overline{A} \cdot \overline{B}$.

- a) Implement the logic function in conventional CMOS technology in its minimal form, drawing the pull-up and the pull-down networks and justifying all the choices.
- b) Find the maximum time interval, following an low-high output switch, during which the trasistors that switch on are biased in the saturation region.

Exercise 4

Let us consider the circuit shown in Fig. 4a. The diode is on when forward biased with 0.7 V and operates in the breakdown region if the reverse voltage overcomes 4.7 V.

Draw the transfer characteristics V_{out} vs. V_{in} , quoting all the relevant points and providing adequate justification for your answer, assuming that the input current varies in the interval [-2 mA; 2 mA].

