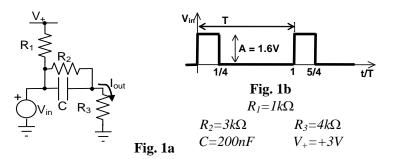
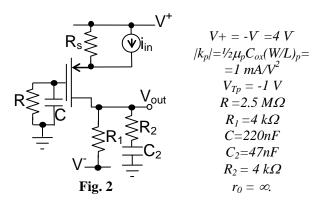
Fondamenti di Elettronica - Ingegneria Elettronica – a.a. 2014/15 Unscheduled Examination – May 7th, 2015

State clearly the question you are answering. E.g. 1a). Solve first questions in **bold**. This is a 3-hour in-class closed-book exam.

Exercise 1

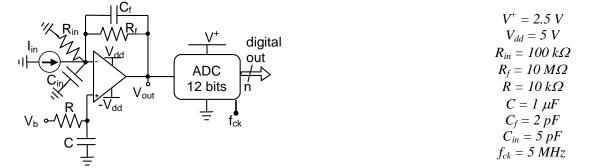

Let's consider again the circuit shown in Fig. 1a.


- a) Draw in a time diagram, providing values for all the relevant points, the curve of the current $I_{out}(t)$, when the input voltage is the one shown in Fig. 1b (*periodic*), if T = 48 ms. Provide justification for your answer.
- b) Draw in a time diagram, providing values for all the relevant points, the curve of the voltage $I_{out}(t)$, when the input voltage is the one shown in Fig. 1b (*periodic*), if T = 2.4 ms. Provide justification for your answer.

Exercise 2

Let's refer to the MOSFET circuit shown in Fig. 2. i_{in} is a small signal current generator.

- a) Find the value of resistor R_s that provides 1 mA static current in the transistor. Find, then, the circuit bias point (i.e. the DC voltages at all the nodes and the DC current in all the branches).
- b) Find the small-signal transfer function v_{out}/i_{in} at high frequency (*C* e C_2 short-circuited).
- c) Draw the magnitude Bode diagram of the transfer function v_{out}/i_{in}.
 d) Find the maximum current amplitude, in the case of a sinusoidal signal at 5 Hz frequency, that ensures a linearity error below or



Exercise 3

equal to 4%.

Let's consider the acquisition chain shown in Fig. 3. Let us assume that the operational amplifier saturates at the power supply voltages. The ADC is based on a successive approximation logic.

- a) Draw the magnitude Bode diagram of the transfer function V_{out}/I_{in} assuming an ideal operational amplifier and $V_b = 0 V$.
- b) Find the achievable input resolution when converting a zero-average sinusoidal current with 100 nA amplitude and 100 Hz frequency and the required value for the voltage V_b .
- c) Find the maximum frequency of a sinusoidal current signal with maximum amplitude compatible with the ADC dynamic range (assume the proper value of V_b is given) that can be properly digitized with an error below or equal to *1 LSB*.
- d) Draw the magnitude Bode diagram of the transfer function V_{out}/I_{in} if the operational amplifier feature a gainbandwidth product *GBWP* = 5 *MHz*, assuming $V_b = 0$ *V*.