Fondamenti di Elettronica - Ingegneria Elettronica - a.a. 2011/12 Midterm Examination - May 3th, 2012

State clearly the question you are answering. E.g. 1a). Solve first questions in bold. This is a 3-hour in-class closed-book exam.

EXERCISE 0 –BOLD QUESTIONS MANDATORY (otherwise all the other exercises will not be corrected).

Consider the circuit shown in Fig. 1a.

- a) Find the average value of the voltage V_{out} when the input voltage is a sinusoidal signal with amplitude equal to $1\ V$ and frequency $1\ kHz$.
- b) Draw in a time diagram, providing values for all the relevant points, the curve of the voltage $V_{out}(t)$, when the input current is the one shown in Fig. 1b (non-periodic). Provide justification for your answer.

Fig. 1a

Fig. 1b

Exercise 1

Let's refer to the MOSFET circuit shown in Fig. 2. v_{in} is a small signal voltage generator.

- a) Find the value of resistor R_s that guarantees a bias current of $1 \, mA$ flowing in the MOSFET. Find, then, the DC voltages at all nodes and the DC current in all branches
- b) Find the small-signal voltage gain $v_{out,2}/v_{in}$ at high frequency (i.e. consider all capacitances as short circuits).
- c) Find the small-signal voltage gain $v_{out,1}/v_{in}$ at low frequency (i.e. consider all capacitances as open circuits), assuming that the transistor features an output resistance $r_0 = 100k\Omega$.
- d) Find the singularities introduced by the capacitors C_1 and C_2 in the transfer function $v_{out,1}/v_{in}$, assuming that the transistor features an output resistance $r_0 = \infty$.

Exercise 2

Let's consider the CMOS logic gate shown in Fig. 3, that implements the logic function $Y = \overline{(A+B)\cdot(C+D\cdot E)\cdot A}$.

- a) Implement the logic function in conventional CMOS technology in its minimal form, drawing the pull-up and the pull-down networks and justifying all the choices.
- b) Compute the propagation delay of the gate, when all the inputs are short circuited and driven by a single logic signal.
- c) Compute if the logic gate obtained when all the inputs are short circuited and driven by a 50% *duty-cycle*, 200MHz frequency logic signal can properly switch. Justify your answer.

$$k_{n}=\frac{1}{2}\cdot\mu_{n} C_{ox} (W/L)_{n} = 100 \ \mu A/V^{2}$$

 $|k_{p}|=\frac{1}{2}\cdot\mu_{p} C_{ox} (W/L)_{p} = 200 \ \mu A/V^{2}$
 $|V_{Tp}|=V_{Tn}=0.5V$ $C_{L}=3 \ pF$

Exercise 3

Let us consider the circuit shown in Fig. 4. The diodes D_1 and D_2 are on when forward biased with 0.7 V. The voltage V_{in} is a saw-tooth signal with period T = 10 ms, peak-to-peak amplitude equal to 8 V and zero mean value.

- a) Draw in a time diagram, providing values for all the relevant points, the curve of the voltage $V_{out}(t)$.
- b) If diode D_I features a break-down voltage V_{BD} =-5V, draw in a time diagram, providing values for all the relevant points, the curve of the voltage $V_{out}(t)$.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.