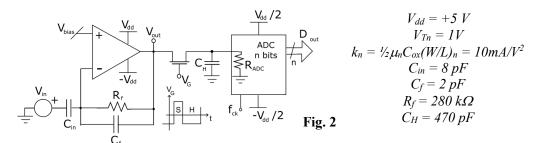

Fondamenti di Elettronica - Ingegneria Elettronica - a.a. 2022/23 Terzo Appello- 23 gennaio 2024

- 1. Riportare sulla prima pagina del foglio protocollo nome, cognome, numero di matricola, cod. persona. data, "Terzo Appello", numero totale di fogli consegnati.
- 2. Numerare tutti i fogli e riportare su ciascuno almeno nome, cognome, numero di matricola, cod. persona.
- 3. Scrivere con grafia leggibile e con la penna
- 4. Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a)...
- 5. Risolvere per primi i punti in grassetto, perche' ritenuti piu' facili. La durata della prova e' 2.5 ore.
- 6. Non sono ammessi libri o appunti o altro materiale, eccetto la calcolatrice.

Esercizio 1

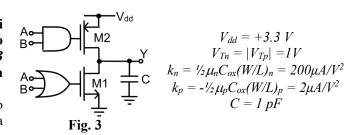
Si consideri il circuito a MOSFET riportato nella Fig. 1, in cui i_{in} e' un generatore di corrente di piccolo segnale. Si assuma l'amplificatore operazionale ideale.


- a) Determinare il minimo valore di V_b necessario per il corretto funzionamento dello specchio di corrente nonche' la polarizzazione del circuito (tensioni a tutti i nodi e correnti in tuti i rami).
- b) Determinare l'espressione del trasferimento V_{out}/i_{in} a bassa frequenza.
- c) Tracciare il diagramma di Bode del modulo del guadagno di corrente di piccolo segnale i_{out}/i_{in} . quotandone tutti i punti significativi,
- d) Determinare il minimo numero di quadri necessario per la resistenza R_{bias} , assumendo di disporre, per la realizzazione delle resistenze di un processo di impiantazione di Boro con dose $D=1\times10^{13}~cm^{-2}$ oppure di un processo di impiantazione di Arsenico con dose $D=8\times10^{12}~cm^{-2}$.

 $V_{dd} = +4.5 \ V$ $V_{Tn} = IV$ $\frac{1}{2}\mu_n C_{ox} = 100 \ \mu A/V^2$ $(W/L)_{n1} = 5$ $(W/L)_{n2} = 10$ $r_0 = \infty$ $R_{bias} = 4 \ k\Omega$ $R_{s1} = 1 \ k\Omega$ $R_{s2} = 500 \ \Omega$ $C = 41 \ pF$ $R_f = 700 \ \Omega$ $\mu_n = 1350 \ cm^2/(Vs)$ $\mu_p = 430 \ cm^2/(Vs)$

Esercizio 2

Si consideri la catena di acquisizione mostrata in Fig. 2. Gli amplificatori operazionali saturino alle tensioni di alimentazione. L'ADC sia del tipo a doppia rampa.



- a) Tracciare l'andamento temporale della tensione di uscita $v_{out}(t)$, quotandone tutti i punti significativi, nelle ipotesi di amplificatore operazionale ideale e assumendo un segnale di ingresso a gradino positivo di ampiezza A = 90mV.
- b) Determinare il valore di V_{bias} ed il numero di bit n dell'ADC richiesti per garantire una risoluzione di $100 \ \mu V$ per un segnale di ingresso in grado di fornire alla uscita V_{out} un segnale di ampiezza $0.9 \times V_{dd}$.
- c) Determinare il margine di fase dello stadio amplificatore se l'amplificatore operazionale e' caratterizzato da un prodotto guadagno-larghezza di banda, GBWP = 30 MHz (Ao non e' noto separatamente).
- d) Assumendo ora un segnale di ingresso sinusoidale di massima ampiezza compatibile con il funzionamento del circuito e frequenza 10 kHz e la relativa V_{bias} necessaria, determinare la minima frequenza di clock richiesta per la corretta conversione, se l'ADC presenta una resistenza di ingresso $R_{ADC} = 50 \text{ M}\Omega$ e n = 12 bits.

Esercizio 3

Si consideri il circuito logico mostrato in Fig. 3.

- a) Tracciare il grafico di Y(t) quotandone tutti i punti significativi e calcolare il tempo complessivo necessario perche' l'uscita raggiunga il valore di $V_{dd}/2$ se $A \in B$ commutano istantaneamente da 11 a 00, assumendo un ritardo di propagazione delle porte AND e OR di 8ns.
- b) Calcolare la potenza statica e dinamica dissipata nel caso in cui A e B siano cortocircuitati tra loro e pilotati da una onda quadra con f = 2 MHz e duty cycle 20%.

